p-group, metabelian, nilpotent (class 4), monomial
Aliases: (C2×Q8)⋊2C8, (C2×C42).6C4, (C22×C4).4D4, C2.9(C23⋊C8), (C2×C4).2M4(2), (C22×Q8).2C4, C2.1(C42⋊3C4), C22.38(C23⋊C4), C22.14(C22⋊C8), C2.1(C42.3C4), C22.9(C4.D4), C23.150(C22⋊C4), C23.67C23.2C2, C22.M4(2).1C2, (C2×C4).2(C2×C8), (C2×C4⋊C4).2C22, (C22×C4).57(C2×C4), SmallGroup(128,51)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C23 — C2×C4⋊C4 — (C2×C42).C4 |
C1 — C22 — C23 — C2×C4⋊C4 — (C2×C42).C4 |
Generators and relations for (C2×C42).C4
G = < a,b,c,d | a2=b4=c4=1, d4=a, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=ab-1c-1, dcd-1=ab2c-1 >
Subgroups: 168 in 67 conjugacy classes, 22 normal (16 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C22⋊C8, C2×C42, C2×C4⋊C4, C22×Q8, C22.M4(2), C23.67C23, (C2×C42).C4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), C22⋊C8, C23⋊C4, C4.D4, C23⋊C8, C42⋊3C4, C42.3C4, (C2×C42).C4
Character table of (C2×C42).C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | -i | -i | i | i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | i | i | -i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -i | -i | -i | i | i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | i | i | i | -i | -i | -i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -1 | -i | i | -i | -i | i | 1 | 1 | -1 | ζ87 | ζ8 | ζ83 | ζ87 | ζ83 | ζ85 | ζ8 | ζ85 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -1 | -i | i | -i | -i | i | 1 | 1 | -1 | ζ83 | ζ85 | ζ87 | ζ83 | ζ87 | ζ8 | ζ85 | ζ8 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | -1 | i | i | -i | -i | -i | 1 | -1 | 1 | ζ8 | ζ83 | ζ85 | ζ85 | ζ8 | ζ83 | ζ87 | ζ87 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | -1 | i | i | -i | -i | -i | 1 | -1 | 1 | ζ85 | ζ87 | ζ8 | ζ8 | ζ85 | ζ87 | ζ83 | ζ83 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | -1 | -i | -i | i | i | i | 1 | -1 | 1 | ζ87 | ζ85 | ζ83 | ζ83 | ζ87 | ζ85 | ζ8 | ζ8 | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | -1 | i | -i | i | i | -i | 1 | 1 | -1 | ζ8 | ζ87 | ζ85 | ζ8 | ζ85 | ζ83 | ζ87 | ζ83 | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | -1 | -i | -i | i | i | i | 1 | -1 | 1 | ζ83 | ζ8 | ζ87 | ζ87 | ζ83 | ζ8 | ζ85 | ζ85 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | -1 | i | -i | i | i | -i | 1 | 1 | -1 | ζ85 | ζ83 | ζ8 | ζ85 | ζ8 | ζ87 | ζ83 | ζ87 | linear of order 8 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2i | -2i | 2 | 2i | 0 | 0 | 0 | 2i | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 2i | 2i | 2 | -2i | 0 | 0 | 0 | -2i | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | -4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ22 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(2 19 32 12)(3 29)(4 17 26 10)(6 23 28 16)(7 25)(8 21 30 14)(9 20)(13 24)
(1 15 31 22)(2 19 32 12)(3 24 25 9)(4 14 26 21)(5 11 27 18)(6 23 28 16)(7 20 29 13)(8 10 30 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (2,19,32,12)(3,29)(4,17,26,10)(6,23,28,16)(7,25)(8,21,30,14)(9,20)(13,24), (1,15,31,22)(2,19,32,12)(3,24,25,9)(4,14,26,21)(5,11,27,18)(6,23,28,16)(7,20,29,13)(8,10,30,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (2,19,32,12)(3,29)(4,17,26,10)(6,23,28,16)(7,25)(8,21,30,14)(9,20)(13,24), (1,15,31,22)(2,19,32,12)(3,24,25,9)(4,14,26,21)(5,11,27,18)(6,23,28,16)(7,20,29,13)(8,10,30,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(2,19,32,12),(3,29),(4,17,26,10),(6,23,28,16),(7,25),(8,21,30,14),(9,20),(13,24)], [(1,15,31,22),(2,19,32,12),(3,24,25,9),(4,14,26,21),(5,11,27,18),(6,23,28,16),(7,20,29,13),(8,10,30,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
Matrix representation of (C2×C42).C4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 16 | 7 |
0 | 0 | 14 | 0 | 7 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 14 | 0 | 0 |
0 | 0 | 16 | 9 | 0 | 0 |
0 | 0 | 2 | 6 | 16 | 7 |
0 | 0 | 11 | 11 | 7 | 1 |
0 | 9 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 4 | 0 |
0 | 0 | 1 | 0 | 13 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,1,0,16,14,0,0,0,1,0,0,0,0,0,0,16,7,0,0,0,0,7,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,8,16,2,11,0,0,14,9,6,11,0,0,0,0,16,7,0,0,0,0,7,1],[0,8,0,0,0,0,9,0,0,0,0,0,0,0,13,0,0,1,0,0,0,0,1,0,0,0,15,1,4,13,0,0,0,1,0,0] >;
(C2×C42).C4 in GAP, Magma, Sage, TeX
(C_2\times C_4^2).C_4
% in TeX
G:=Group("(C2xC4^2).C4");
// GroupNames label
G:=SmallGroup(128,51);
// by ID
G=gap.SmallGroup(128,51);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,723,352,1242,521,136,2804]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^4=1,d^4=a,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a*b^-1*c^-1,d*c*d^-1=a*b^2*c^-1>;
// generators/relations
Export